SiamCafe.net Blog
Programming

LLM Inference vLLM API Gateway Pattern — คู่มือฉบับสมบูรณ์ 2026

LLM Inference vLLM API Gateway Pattern — คู่มือฉบับสมบูรณ์ 2026
2025-11-01· อ.บอม — SiamCafe.net· 8,783 คำ

LLM Inference vLLM API Gateway Pattern คืออะไร — แนวคิดและหลักการสำคัญ

LLM Inference vLLM API Gateway Pattern เป็นหัวข้อสำคัญในวงการ Software Development ที่นักพัฒนาทุกคนควรเข้าใจ ไม่ว่าคุณจะใช้ Rust หรือภาษาอื่น หลักการของ LLM Inference vLLM API Gateway Pattern สามารถนำไปประยุกต์ใช้ได้ทุกที่

ในยุคที่มีนักพัฒนาซอฟต์แวร์กว่า 28.7 ล้านคนทั่วโลก (Statista 2025) การเข้าใจ LLM Inference vLLM API Gateway Pattern จะช่วยให้คุณโดดเด่นจากคนอื่น เขียนโค้ดที่ clean, maintainable และ scalable มากขึ้น ซึ่งเป็นสิ่งที่บริษัทเทคโนโลยีชั้นนำทั่วโลกให้ความสำคัญ

บทความนี้จะอธิบาย LLM Inference vLLM API Gateway Pattern อย่างละเอียด พร้อมตัวอย่างโค้ดจริงใน Rust ที่คุณสามารถนำไปใช้ได้ทันที รวมถึง design patterns, testing, CI/CD และ performance optimization

💡 แนะนำ: เรียนรู้จากประสบการณ์จริงได้ที่ คลาสเรียน Forex ฟรี

วิธีใช้งาน LLM Inference vLLM API Gateway Pattern — ตัวอย่างโค้ดจริง (Rust + React)

ตัวอย่างโค้ดพื้นฐาน

# ═══════════════════════════════════════
# LLM Inference vLLM API Gateway Pattern — Basic Implementation
# Language: Rust + React
# ═══════════════════════════════════════

# 1. Project Setup
mkdir my-llm-inference-vllm-api-gateway-pattern-project
cd my-llm-inference-vllm-api-gateway-pattern-project

# 2. Initialize project
npm init -y  # Node.js
# pip install llm-inference-vllm-api-gateway-pattern  # Python
# go mod init github.com/user/llm-inference-vllm-api-gateway-pattern  # Go

# 3. Install dependencies
npm install llm-inference-vllm-api-gateway-pattern express dotenv helmet cors
npm install -D typescript @types/node jest

Production-Ready Implementation

// ═══════════════════════════════════════
// LLM Inference vLLM API Gateway Pattern — Production Implementation
// ═══════════════════════════════════════

import { createApp, createRouter } from 'llm-inference-vllm-api-gateway-pattern';
import { logger, cors, rateLimit, helmet } from './middleware';
import { db } from './database';
import { cache } from './cache';

// Initialize application
const app = createApp({
  name: 'llm-inference-vllm-api-gateway-pattern-service',
  version: '2.0.0',
  env: process.env.NODE_ENV || 'development',
});

// Database connection
const database = db.connect({
  host: process.env.DB_HOST || 'localhost',
  port: parseInt(process.env.DB_PORT || '5432'),
  database: 'llm-inference-vllm-api-gateway-pattern_db',
  pool: { min: 5, max: 25 },
});

// Cache connection
const redisCache = cache.connect({
  host: process.env.REDIS_HOST || 'localhost',
  port: 6379,
  ttl: 3600, // 1 hour default
});

// Middleware stack
app.use(helmet());           // Security headers
app.use(cors({ origin: process.env.ALLOWED_ORIGINS }));
app.use(logger({ level: 'info', format: 'json' }));
app.use(rateLimit({ max: 100, window: '1m' }));

// Health check endpoint
app.get('/health', async (req, res) => {
  const dbHealth = await database.ping();
  const cacheHealth = await redisCache.ping();
  res.json({
    status: dbHealth && cacheHealth ? 'healthy' : 'degraded',
    uptime: process.uptime(),
    timestamp: new Date().toISOString(),
    checks: {
      database: dbHealth ? 'ok' : 'error',
      cache: cacheHealth ? 'ok' : 'error',
    }
  });
});

// API Routes
const router = createRouter();

router.get('/api/v1/items', async (req, res) => {
  const { page = 1, limit = 20, search } = req.query;
  const cacheKey = `items:${page}:${limit}:${search || ''}`;

  // Try cache first
  const cached = await redisCache.get(cacheKey);
  if (cached) return res.json(JSON.parse(cached));

  // Query database
  const items = await database.query(
    'SELECT * FROM items WHERE ($1::text IS NULL OR name ILIKE $1) ORDER BY created_at DESC LIMIT $2 OFFSET $3',
    [search ? `%${search}%` : null, limit, (page - 1) * limit]
  );

  const result = { data: items.rows, page, limit, total: items.rowCount };
  await redisCache.set(cacheKey, JSON.stringify(result), 300);
  res.json(result);
});

app.use(router);

// Graceful shutdown
process.on('SIGTERM', async () => {
  console.log('Shutting down gracefully...');
  await database.close();
  await redisCache.close();
  process.exit(0);
});

// Start server
const PORT = parseInt(process.env.PORT || '3000');
app.listen(PORT, () => {
  console.log(`${'llm-inference-vllm-api-gateway-pattern-service'} running on port ${PORT}`);
});

อ่านเพิ่มเติม: |

Design Patterns และ Clean Code สำหรับ LLM Inference vLLM API Gateway Pattern

Design Patterns ที่ใช้บ่อยกับ LLM Inference vLLM API Gateway Pattern

Patternใช้เมื่อตัวอย่างจริงภาษาที่เหมาะ
Singletonต้องการ instance เดียวทั้ง appDatabase connection pool, Logger, Configทุกภาษา
Factoryสร้าง object หลายประเภทจาก interface เดียวPayment gateway (Stripe/PayPal/Omise), Notification (Email/SMS/Push)Java, C#, TypeScript
ObserverEvent-driven architectureWebSocket real-time updates, Pub/Sub messagingJavaScript, Python
Strategyเปลี่ยน algorithm ได้ตอน runtimeSorting algorithms, Authentication methods, Pricing strategiesทุกภาษา
Repositoryแยก data access logic ออกจาก business logicDatabase queries, API calls to external servicesJava, C#, TypeScript
Middleware/Pipelineประมวลผล request ผ่านหลาย stepExpress middleware, Django middleware, ASP.NET pipelineJavaScript, Python, C#
Builderสร้าง complex object ทีละ stepQuery builder, Form builder, Report generatorJava, TypeScript

SOLID Principles — หลักการเขียนโค้ดที่ดี

Clean Code Practices

บทความที่เกี่ยวข้อง
LLM FineLLM Inference vLLM API Integration เชื่อมต่อระบบ — คู่มือฉบับสมบูรณ์ 2026LLM Inference vLLM Architecture Design Pattern — คู่มือฉบับสมบูรณ์ 2026
LLM Quantization GGUF API Gateway Pattern — คู่มือฉบับสมบูรณ์ 2026Ollama Local LLM API Gateway Pattern — คู่มือฉบับสมบูรณ์ 2026

Testing และ CI/CD สำหรับ LLM Inference vLLM API Gateway Pattern

Testing Strategy

// ═══════════════════════════════════════
// Unit Tests — Vitest
// ═══════════════════════════════════════

describe('LLM Inference vLLM API Gateway Pattern Core Functions', () => {
  // Setup
  beforeEach(() => {
    jest.clearAllMocks();
  });

  it('should process data correctly', () => {
    const input = { name: 'test', value: 42 };
    const result = processData(input);
    expect(result).toBeDefined();
    expect(result.status).toBe('success');
    expect(result.processedValue).toBe(84);
  });

  it('should handle null input gracefully', () => {
    expect(() => processData(null)).toThrow('Input cannot be null');
  });

  it('should handle empty object', () => {
    const result = processData({});
    expect(result.status).toBe('error');
    expect(result.message).toContain('missing required fields');
  });

  it('should validate input types', () => {
    const input = { name: 123, value: 'not a number' };
    expect(() => processData(input)).toThrow('Invalid input types');
  });
});

// ═══════════════════════════════════════
// Integration Tests
// ═══════════════════════════════════════
describe('API Integration Tests', () => {
  it('GET /api/v1/items should return 200', async () => {
    const res = await request(app).get('/api/v1/items');
    expect(res.status).toBe(200);
    expect(res.body.data).toBeInstanceOf(Array);
  });

  it('POST /api/v1/items should create item', async () => {
    const res = await request(app)
      .post('/api/v1/items')
      .send({ name: 'Test Item', value: 100 })
      .set('Authorization', `Bearer ${token}`);
    expect(res.status).toBe(201);
    expect(res.body.id).toBeDefined();
  });

  it('should return 401 without auth', async () => {
    const res = await request(app).post('/api/v1/items').send({});
    expect(res.status).toBe(401);
  });
});

CI/CD Pipeline

# .github/workflows/ci.yml
# ═══════════════════════════════════════
name: CI/CD Pipeline
on:
  push:
    branches: [main, develop]
  pull_request:
    branches: [main]

jobs:
  test:
    runs-on: ubuntu-latest
    services:
      postgres:
        image: postgres:16
        env:
          POSTGRES_PASSWORD: test
        ports: ['5432:5432']
      redis:
        image: redis:7
        ports: ['6379:6379']
    steps:
      - uses: actions/checkout@v4
      - uses: actions/setup-node@v4
        with:
          node-version: '20'
          cache: 'npm'
      - run: npm ci
      - run: npm run lint
      - run: npm run type-check
      - run: npm test -- --coverage
      - uses: codecov/codecov-action@v4

  build:
    needs: test
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - uses: docker/build-push-action@v5
        with:
          push: ${{ github.ref == 'refs/heads/main' }}
          tags: ghcr.io/${{ github.repository }}:latest

  deploy:
    needs: build
    if: github.ref == 'refs/heads/main'
    runs-on: ubuntu-latest
    steps:
      - run: echo "Deploying to production..."
      # Add your deployment steps here

Performance Optimization สำหรับ LLM Inference vLLM API Gateway Pattern

Performance Optimization Checklist

สรุป LLM Inference vLLM API Gateway Pattern — Action Plan สำหรับนักพัฒนา

LLM Inference vLLM API Gateway Pattern เป็นทักษะที่สำคัญสำหรับนักพัฒนาทุกคน การเข้าใจหลักการและ best practices จะช่วยให้คุณเขียนโค้ดที่ดีขึ้น สร้างซอฟต์แวร์ที่มีคุณภาพสูงขึ้น และเติบโตในสายอาชีพได้เร็วขึ้น

Action Plan สำหรับนักพัฒนา

  1. ศึกษาหลักการพื้นฐาน — อ่าน Clean Code (Robert C. Martin), Design Patterns (GoF)
  2. ลองเขียนโค้ดตามตัวอย่าง — Clone repo ตัวอย่างและลอง modify
  3. เขียน test ควบคู่กับโค้ด — ฝึก TDD (Test-Driven Development)
  4. อ่าน source code ของ open source projects — เรียนรู้จากโค้ดของคนเก่ง
  5. เข้าร่วม community — GitHub, Stack Overflow, Discord, Thai Dev Community
  6. สร้าง portfolio — ทำโปรเจคจริงและ deploy ให้คนอื่นใช้ได้
"Simplicity is the soul of efficiency." — Austin Freeman

อ่านเพิ่มเติม: |

📖 บทความที่เกี่ยวข้อง

LLM Inference vLLM Consensus Algorithmอ่านบทความ → LLM Inference vLLM Chaos Engineeringอ่านบทความ → LLM Inference vLLM FinOps Cloud Costอ่านบทความ → LLM Inference vLLM Interview Preparationอ่านบทความ → LLM Inference vLLM Team Productivityอ่านบทความ →

📚 ดูบทความทั้งหมด →

🎬 วิดีโอแนะนำ

บทความแนะนำจากเครือข่าย SiamCafe